

MM6108-MF08651-US

IEEE 802.11ah Sub-1 GHz Wi-Fi HaLow module

Advanced data sheet

Confidential Copyright © 2023

Table of contents

1. Product overview	3
1.1. Introduction	3
1.2. Features	4
1. 3. Applications	5
2. Pin descriptions	6
3. Functional description	8
3.1. Block diagram	8
3.2. Recommended usage schematics	9
3.3. SDIO host requirements	13
3.4. SPI host requirements	13
3. 5. Power management	13
3. 6. Digital interfaces	13
4. Electrical characteristics	14
4. 1 Absolute max ratings	14
4.2. Immunity	14
4.3. Recommended operating conditions	14
4.4. Power consumption	15
4.4.1. Transmit power consumption	15
4.4.2. Receive power consumption	15
4.4.3. Sleep power consumption	16
4.4.4. DTIM3 power consumption	16
4.4.5. DTIM10 power consumption	17
4.5. RF Specifications	18
4.5.1. Receiver	18
4.5.3. Transmitter	18
5. Physical specification	19
6. Recommended PCB footprint	20
7. Certification	21
7.1. FCC	21
7.2 IC	23
8. Part numbers and ordering information	25
9. Handling and storage	25
10. Revision history	26

1. Product overview 1.1. Introduction

Morse Micro provides a complete Wi-Fi HaLow connectivity solution. The MM6108-MF08651-US is a fully integrated Wi-Fi HaLow® module with long-range, low-power consumption and superior RF performance, featuring the MM6108 Wi-Fi HaLow SoC.

The MM6108-MF08651-US module is designed in compliance with the IEEE 802.11ah standard, supporting data rates up to 32.5 Mbps with programmable operation between 902 MHz and 928 MHz.

This module includes ultra-long-reach PA, high linearity LNA, SAW filter, T/R switch, 32 MHz crystal oscillator and it has been designed for a simplified Wi-Fi HaLow connection to an external host for applications in which a customer wants to replace their prior RF technology with a Wi-Fi HaLow connection while using the latest WPA3 security protocol.

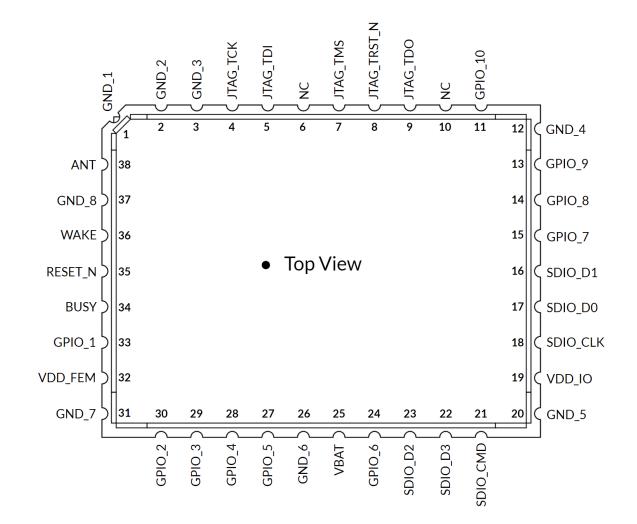
Battery-operated applications are supported by a combination of features that are inherently supported by the module. The IEEE 802.11ah standard provides for extended sleep times for battery-operated stations (STAs or client devices), with longer durations than other prior IEEE 802.11a/b/g/n/ac generations. The standard also allows longer extended maximum idle times for clients to conserve energy without being removed from the access point's (AP's) list of associated devices.

1.2. Features

Ultra-long-range, low-power Wi-Fi HaLow module for IoT applications:

- Channel bandwidth options of 1/2/4/8 MHz
- Single-stream max. data rate of 32.5 Mbps @ 8 MHz or 15 Mbps @ 4 MHz channel
- Radio supporting Sub-1 GHz frequency bands
 - Frequency range: 902-928 MHz
 - Max. output power: 21 dBm
- 802.11ah OFDM PHY supporting WFA HaLow certification
 - BPSK & QPSK, 16-QAM & 64-QAM Modulation
 - Automatic frequency and gain control
 - Packet detect and channel equalization
 - Forward Error Correction (FEC) coding and decoding
 - Support for Modulation and Coding Scheme (MCS) rates MCS 0-7 and MCS 10
 - Support for 1 MHz and 2 MHz duplicate modes
 - Support for Traveling Pilots and Short Guard Intervals
- 802.11ah MAC supporting WFA HaLow certification
 - Support for STA and AP roles
 - Listen-Before-Talk (LBT) access with energy detect
 - 802.11 power save
 - o 802.11 fragmentation and defragmentation
 - Packet aggregation
 - Power-Saving Target Wake Time (TWT) support for long battery life
 - Restricted Access Window (RAW)
 - Automatic and manual MCS rate selection
- Support for various interface options
 - SDIO 2.0 compliant host/slave interface
 - 2 x UARTs
- Power Management Unit (PMU) for various modes of operation
 - Power-down (interrupt driven wake)
 - Hibernate mode (internal / external wake)
 - Active receive / transmit mode
 - Integrated DC-DC converter supporting a voltage supply from 3.0V to 3.6V
- Wide spectrum of security features
 - AES encryption engine
 - Hardware support for SHA1 and SHA2 hash functions (SHA-256, SHA-384, SHA-512)
 - WPA3 including Protected Management Frames (PMF)
 - Opportunistic Wireless Encryption (OWE)

1.3. Applications


The MM6108-MF08651-US is ideally suited for Internet of Things (IoT) and Machine-to-Machine (M2M) applications such as:

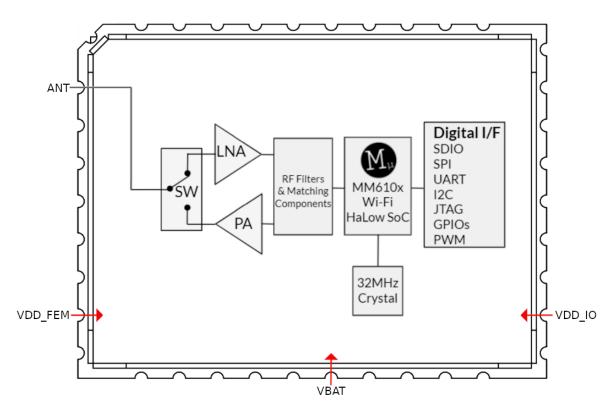
- Surveillance cameras and sensors
- Cloud connectivity
- Low-power sensor networks
- Building Automation Systems (BAS)
- Asset tracking and management
- Machine performance monitors and sensors
- Building access control and security
- Drone video and navigation communications
- Connected toys and games
- Rural internet access
- Agricultural and farm networks
- Utility smart meter and intelligent grid
- Proximity sensors
- Industrial automation controls
- Smart home automation

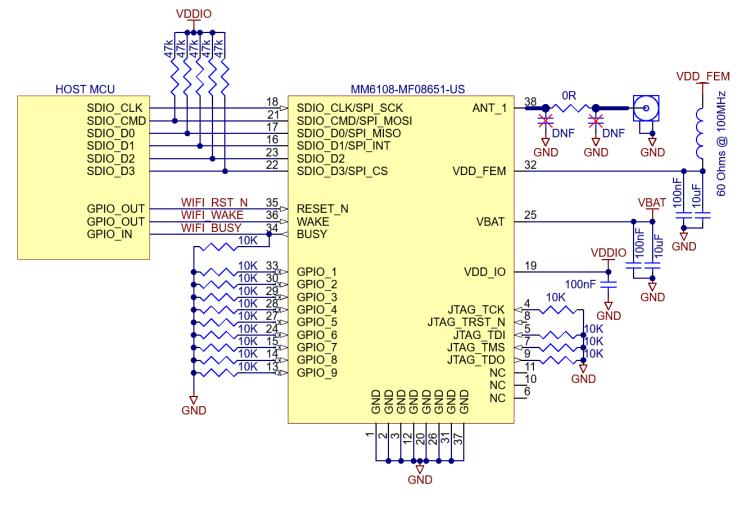
- EV car chargers
- Appliances
- Construction site connectivity
- Smart signs and kiosks
- Retail point-of-sale terminals
- Vehicle-to-vehicle or Vehicle-to-Infrastructure communications
- IP sensor networks
- Biometric IDs and keypads
- Warehouse Connectivity
- Intelligent lighting controls
- BT/ZigBee([™])/Z-Wave([™]) to Wi-Fi HaLow gateways
- Wi-Fi to Wi-Fi HaLow bridges
- Wi-Fi HaLow client adapters / dongles
- Smart city networks

2. Pin descriptions

The MM6108-MF08651-US module has 38 pins, which are described in this section. The following illustration shows the top view of the module pins.

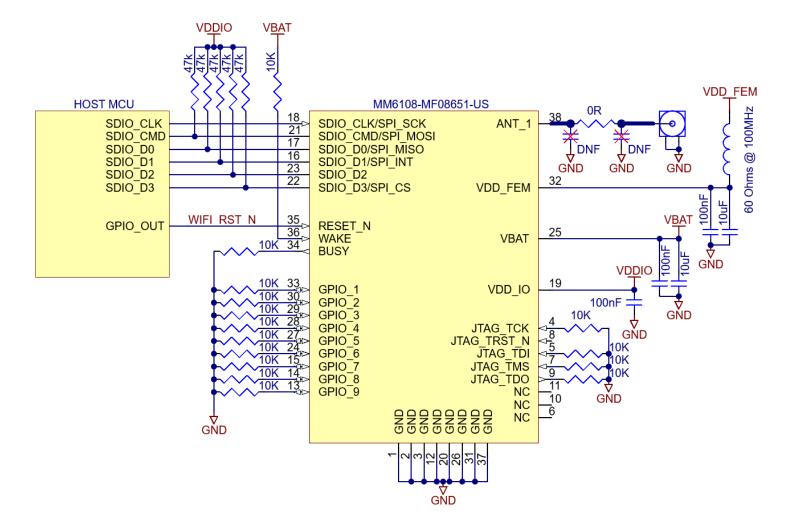
Pin	Name	Туре	Primary function	Alternate & Other Function(s)
1	GND	Power	Ground	
2	GND	Power	Ground	
3	GND	Power	Ground	
4	JTAG_TCK	1	JTAG Clock	
5	JTAG_TDI ^[1]	1	JTAG Data In	
6	NC	NC	Do Not Connect	
7	JTAG_TMS ^[1]	1	JTAG Mode Select	
8	JTAG_TRST_N	1	JTAG Reset	
9	JTAG_TDO ^[1]	0	JTAG Data Out	
10	NC	I/O	Do Not Connect	
11	GPIO_10 ^[2]	1/0	General Purpose IO10	
12	GND	Power	Ground	
13	GPIO_9 ^[2]	I/O	General Purpose IO9	
14	GPIO_8 ^[2]	I/O	General Purpose IO8	
15	GPIO_7 ^[2]	I/O	General Purpose IO7	UART1_TX ^[4]
16	SDIO_D1 ^[3]	I/O	SDIO D1	SPI_INT
17	SDIO_D0 ^[3]	I/O	SDIO DO	SPI_MISO
18	SDIO_CLK	I/O	SDIO Clock	SPI_SCK
19	VDD_IO	Power	3.3V VDD_IO Supply	
20	GND	Power	Ground	
21	SDIO_CMD ^[3]	I/O	SDIO Command	SPI_MOSI
22	SDIO_D3 ^[3]	I/O	SDIO D3	SPI_CS
23	SDIO_D2 ^[3]	I/O	SDIO D2	
24	GPIO_6 ^[2]	I/O	General Purpose IO6	UART1_RX ^[4]
25	VBAT	Power	3.3V VBAT Supply	
26	GND	Power	Ground	
27	GPIO_5 ^[2]	I/O	General Purpose IO5	I2C_SCL ^[4]
28	GPIO_4 ^[2]	I/O	General Purpose IO4	I2C_SDA ^[4]
29	GPIO_3 ^[2]	I/O	General Purpose IO3	UARTO_TX, PWM1_3 ^[4]
30	GPIO_2 ^[2]	I/O	General Purpose IO2	UARTO_RX, PWM1_2 ^[4]
31	GND	Power	Ground	
32	VDD_FEM	Power	3.3V Frontend Module Supply	
33	GPIO_1 ^[2]	I/O	General Purpose IO1	PWM1_1 ^[4]
34	BUSY	0	Wi-Fi BUSY	
35	RESET_N ^[5]	1	System Reset	
36	WAKE ^[5]	1	Wake	
37	GND	Power	Ground	
38	ANT	Analog	Antenna	
-	GND	Ground	Exposed ground pad - Connect to PCB GND	

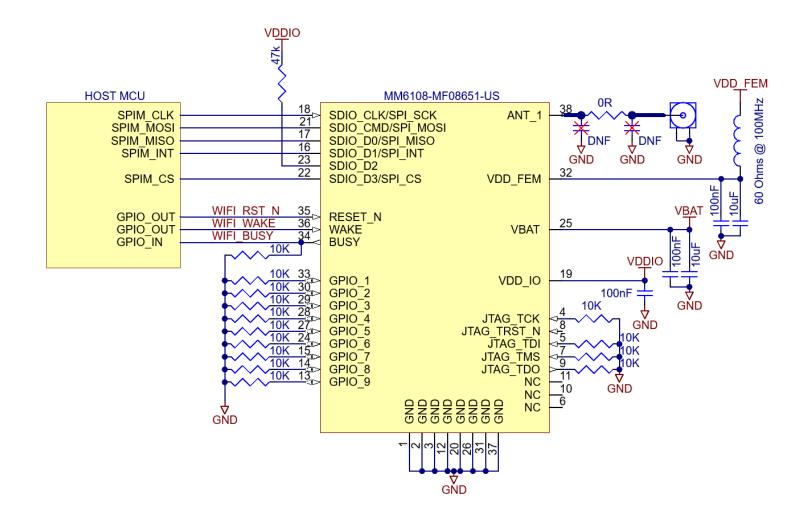

[1] JTAG pins should be tied to GND via a 10k pull down resistor


- [2] All unused GPIO should be tied to GND via a 10k pull down resistor
- [3] All SDIO bus pins except SDIO_CLK should be pull up with a 10k-100k resistor as per the the SDIO standard
- [4] Pending software support
- [5] Supplied from VBAT domain. Other digital pins are driven by VDDIO domain.

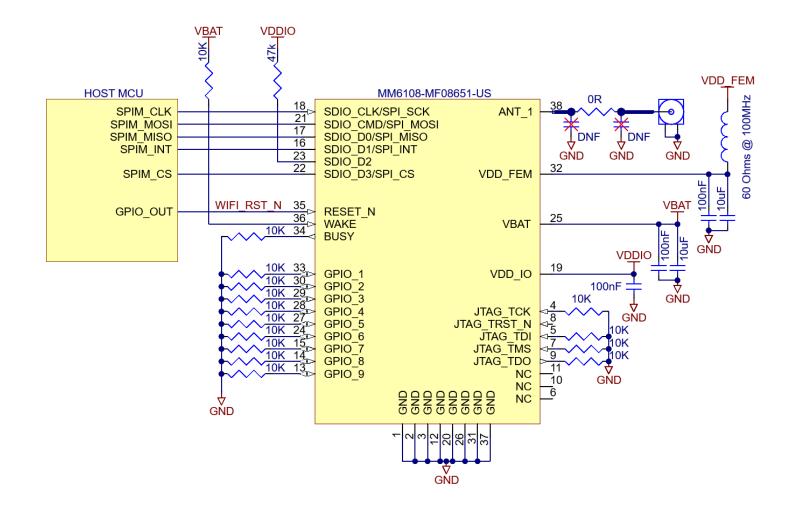
3. Functional description

The following sections describe the functions of the MM6108-MF08651-US module.


3.1. Block diagram



3.2. Recommended usage schematics


SDIO configuration

SDIO configuration with no power save

SPI configuration

SPI configuration with no power save

3.3. SDIO host requirements

The host should support SDIO v2.0 with SDIO clock speeds of up to 50 MHz. Slower clock speeds will impact the maximum achievable throughput.

At a minimum, 2 x GPIOs are required as a CMOS output to drive the RESET and WAKE signals. If power save is used, a third GPIO is needed, set as a CMOS input to receive the BUSY signal from the module.

The SDIO data and command lines should be pulled up with 10k-100k resistors as per the SDIO 2.0 specification.

3.4. SPI host requirements

When selecting a CPU host to interface via SPI to the MM6108-MF08651-US module, consider the following recommendations to achieve the best throughput::

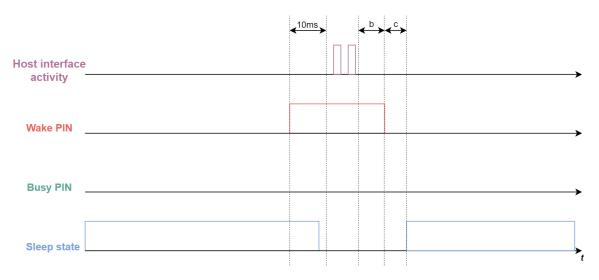
- The host should support level-triggered interrupts.
- The host should support full-duplex SPI mode.
- The host should support DMA backed transactions on the SPI bus.

Standard SPI can achieve up to 25 Mbps at 50 MHz but this will reduce significantly if there is no DMA support. For example, an SPI interface with an 8-byte buffer per transaction might only achieve 2Mbps throughput on the SPI bus.

3. 5. Power management

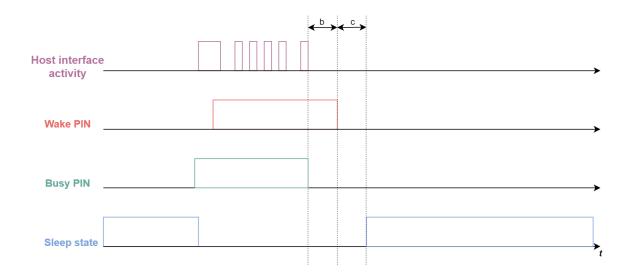
MM6108-MF08651-US module power is derived from a 3.0 to 3.6V supply provided on pins VBAT and VDD_FEM. VBAT powers the internal circuitry of the MM6108 and VDD_FEM powers the on-board ultra-long-range power amplifier.

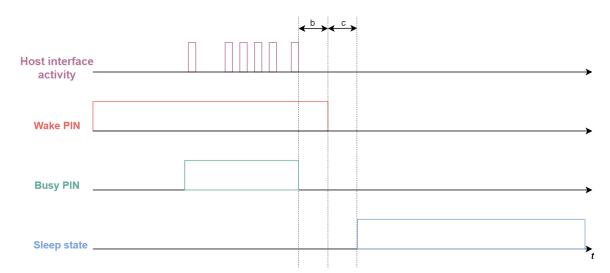
VDDIO sets the IO voltage of the MM6108 and should be connected to the same power supply as the host MCU.


There are no strict power-up sequencing requirements, however the voltage on VDDIO must not exceed VBAT.

3. 6. Digital interfaces

All unused digital IO pins must be pulled up or down to ensure they do not float. Failure to do so will result in a higher leakage current on the VDDIO supply.


3.7. Sleep/Wake Sequencing



- 1. The driver will raise the wake pin and wait a static period, before initializing the shared communication bus and initiating host interface activity. On MM6108, this period is typically 10ms.
- 2. After completing communication the driver will wait a static period, **b**, before lowering the wake pin (assuming no further communication has occurred). Depending on the nature of the communication (802.11 data vs. commands) this period can range from 5 to 90ms.
- 3. After the wake pin has fallen, the MM6108 will wait a period, **c**, before initiating hardware sleep. This period is dynamic and will differ depending on the power-save protocol in use and other chip-specific factors

3.7.2. MM6108 wakes host from sleep (with host interface disabled)

- 1. The MM6108 wakes from sleep and realizes it needs to pass traffic or an event to the host. It begins by asserting the busy pin.
- 2. The busy pin will fire an interrupt on the host, after which the host will immediately
 - a. Raise the Wake PIN.
 - b. Wait a static period, 10ms
 - c. Initializes / enables the shared host interface.
- 3. After asserting the busy pin, the MM6108 will immediately begin initiating host interface communication. It does not wait until the host 'enables' the shared host interface. This is okay, as the bus transaction will be waiting for the host and an interrupt should fire as soon as the host enables bus interrupts.
- 4. Once the MM6108 no longer needs to converse with the host, the busy pin will drop immediately. The host will wait a static period, **b**, before dropping the wake pin.
- 5. After the wake pin has fallen, the MM6108 will wait a period, **c**, before initiating hardware sleep.

3.7.3. MM6108 initiates communication with host (host interface enabled)

- 1. The MM6108 was previously woken by the host for communication.
- 2. Sometime after wake and host->MM6108 communication, the MM6108 realizes it needs to send data back to the host (MM6108 -> host). It will assert the busy pin.
- 3. The busy pin will fire an interrupt on the host, after which it will immediately
 - a. Process the interrupt but perform no further action as the wake pin was already asserted and the shared host interface is currently enabled/initialized.
- 4. After MM6108->host communication completion, hardware sleep will be initiated as described above.

4. Electrical characteristics

4. 1 Absolute max ratings

Stress beyond absolute maximum ratings may cause permanent damage to the MM6108-MF08651-US module. Functional operation is guaranteed for recommended operation conditions only. Operation of the device outside the recommended conditions may result in a reduced lifetime and/or reliability problems (even if the absolute maximum ratings are not exceeded).

Parameter	Min	Max	Unit
VBAT voltage	-0.3	4.3	V
VDD_FEM voltage	-0.3	4.3	V
Voltage on digital I/O pin	-0.3	4.3	V
Voltage on analog/RF pin	-0.3	1.2	V
Storage temperature	-40	125	°C
RF input power (CW)	-	6	dBm

4.2. Immunity

Parameter		Min	Max	Unit	
Electrostatic	Human body model (HBM),	RF Input	-1000	1000	V
discharge (ESD)	per ANSI / ESDA / JEDEC JS001	All pins except RF Input	-2000	2000	V
performance	Charged device model (CDM), per JESD22-C101	All pins	-500	500	V

4.3. Recommended operating conditions

Parameter	Min	Тур	Max	Unit
Ambient temperature	-40	25	85	°C
VBAT	3.0	3.3	3.6	V
VDD_FEM	3.0	3.3	3.6	V
VDDIO ^[1]	1.62	3.3	3.6	V
Digital I/O voltage	0	3.3	VDDIO	\vee
RESET / WAKE I/O Voltage	0	3.3	VBAT	V

[1] VDDIO should not exceed VBAT

Performance specifications are achieved under typical operating conditions, unless otherwise specified.

4.4. Power consumption

4.4.1. Transmit power consumption

Mode	Condition	V	BAT Curre	nt		Unit		
	$V_{BAT}/V_{DDIO}/V_{DD_{FEM}} = 3.3V$	Min	Тур	Max	Min	Тур	Max	
Transmit	1 MHz channel	54	57	73	151	152	162	mA
current (MCS0,	2 MHz channel	54.5	60	73	150.5	152	159.5	mA
21dBm, 100% D.C.)	4 MHz channel	60.5	66	79.5	146.5	151	156	mA
,	8 MHz channel	71	78	91.5	142.5	147	153	mA
Transmit	1 MHz channel	48	51	62.5	98.5	104	112	mA
current (MCS7,	2 MHz channel	51.5	55	66.5	97.5	104	112	mA
17dBm, 100% D.C.)	4 MHz channel	57	62	73	93.5	102	108.5	mA
- ,	8 MHz channel	68	72	84	91	99	105.5	mA

4.4.2. Receive power consumption

Mode	Condition	V	BAT Current	:	V _{DD_FEM}			Unit
	$V_{BAT}/V_{DDIO}/V_{DD_{FEM}} = 3.3V$	Min	Тур	Max	Min	Тур	Max	1
Listen	1 MHz channel	25	26	35.5	4	4.5	4.7	mA
	2 MHz channel	26	28	35				mA
	4 MHz channel	30	32	40				mA
	8 MHz channel	35	37	45.5				mA
Active	1 MHz channel	26	26.5	35.5				mA
receive MCS7	2 MHz channel	30	30	39.5				mA
	4 MHz channel	37.5	40	49				mA
	8 MHz channel	53	54	67				mA
Active	1 MHz channel	26	28	37				mA
receive MCS0	2 MHz channel	28.5	29.5	38.5				mA
	4 MHz channel	36	36	47				mA
	8 MHz channel	48	50	62.5				mA

4.4.3. Sleep power consumption

Mode	Condition		V _{BAT} V _{FEM}				Unit	
	$V_{BAT}/V_{DDIO}/V_{DD_{FEM}} = 3.3V$	Min	Тур	Max	Min	Тур	Max	
Snooze	RC Oscillator on, Memory retained, configurable wake up timer	9.5	27	370	0.001	0.05	0.55	μΑ
Deep sleep	RC Oscillator on, configurable wake up timer	0.8	1	1.8	0.001	0.05	0.55	μΑ
Hibernate	Power off, wait for external interrupt	0.03	0.05	1	0.001	0.05	0.55	μΑ

4.4.4. DTIM3 power consumption

Mode	Condition		V_{BAT}			\mathbf{V}_{FEM}		Unit
	V _{BAT} /V _{DDIO} /V _{DD_FEM} = 3.3V, 102.4ms Beacon Interval	Min	Тур	Max	Min	Тур	Max	
S1G beacons	1 MHz channel	380	395	420	45	47	55	μA
	2 MHz channel	380	395	420	45	47	55	μA
	4 MHz channel	260	280	320	24	25	30	μA
	8 MHz channel	260	280	320	24	25	30	μA
S1G beacons with proprietary	1 MHz channel	170	190	250	12	13	43	μA
DTIM signaling ¹	2 MHz channel	170	190	250	12	13	43	μA
	4 MHz channel	155	190	200	8	9	20	μA
	8 MHz channel	155	190	200	8	9	20	μA

¹ Signaling that indicates whether a power save STA should receive and process an entire beacon

4.4.5. DTIM10 power consumption

Mode	Condition		V_{BAT}			\mathbf{V}_{FEM}		Unit
	V _{BAT} /V _{DDIO} /V _{DD_FEM=} 3.3V, 102.4ms Beacon Interval		Тур	Max	Min	Тур	Max	
S1G beacons	1 MHz channel	140	155	240	14	15	16	μΑ
	2 MHz channel	140	155	240	14	15	16	μΑ
	4 MHz channel	100	115	130	8	8	9	μΑ
	8 MHz channel	100	115	130	8	8	9	μΑ
S1G beacons with proprietary	1 MHz channel	85	95	195	4	5	6	μΑ
DTIM signaling ²	2 MHz channel	85	95	195	4	5	6	μΑ
	4 MHz channel	75	90	110	3	5	6	μΑ
	8 MHz channel	75	90	110	3	5	6	μA

 $^{^{2}}$ Signaling that indicates whether a power save STA should receive and process an entire beacon

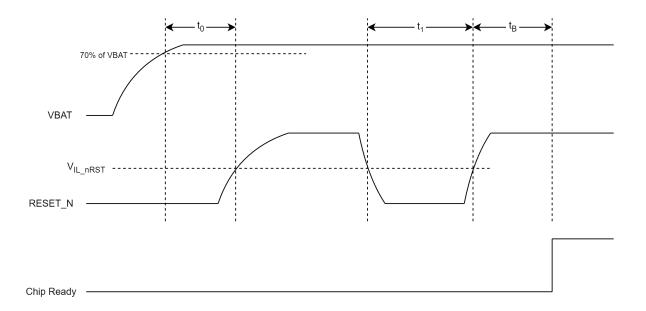
4.5. RF Specifications

4.5.1. Receiver

MCS	Modulation	Coding	I	Phy rate (kb	ops) per BW		Minimum	Receive sen	sitivity (dB	m) per BW
index	ex scheme rate	rate	1 MHz	2 MHz	4 MHz	8 MHz	1 MHz	2 MHz	4 MHz	8 MHz
0	BPSK	1/2	333	722	1500	3250	-105	-103	-101	-97
1	QPSK	1/2	667	1444	3000	6500	-102	-100	-97	-93
2	QPSK	3/4	1000	2167	4500	9750	-99	-97	-95	-91
3	16-QAM	1/2	1333	2889	6000	13000	-96	-94	-91	-88
4	16-QAM	3/4	2000	4333	9000	19500	-93	-90	-88	-85
5	64-QAM	2/3	2667	5778	12000	26000	-89	-87	-84	-80
6	64-QAM	3/4	3000	6500	13500	29250	-88	-85	-83	-79
7	64-QAM	5/6	3333	7222	15000	32500	-87	-84	-81	-77
10	BPSK	1/2 x 2	167		N/A		-107		N/A	

Sensitivities for 10% packet error rate, 1000 byte packets.

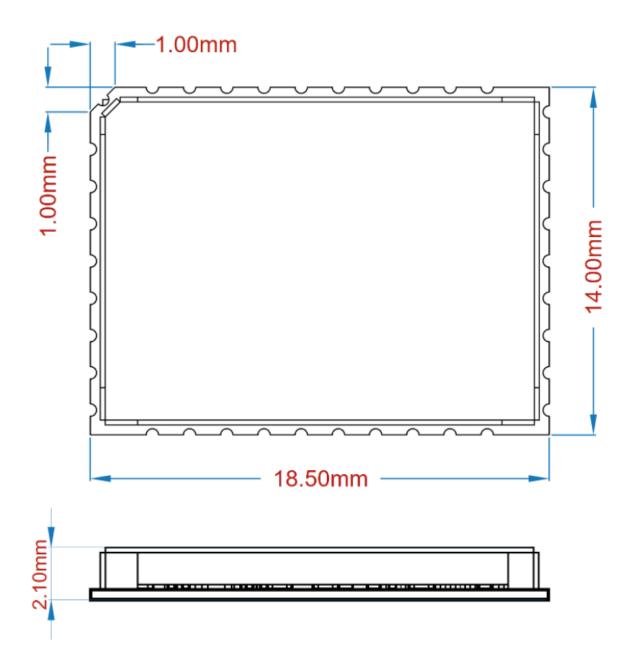
4.5.3. Transmitter

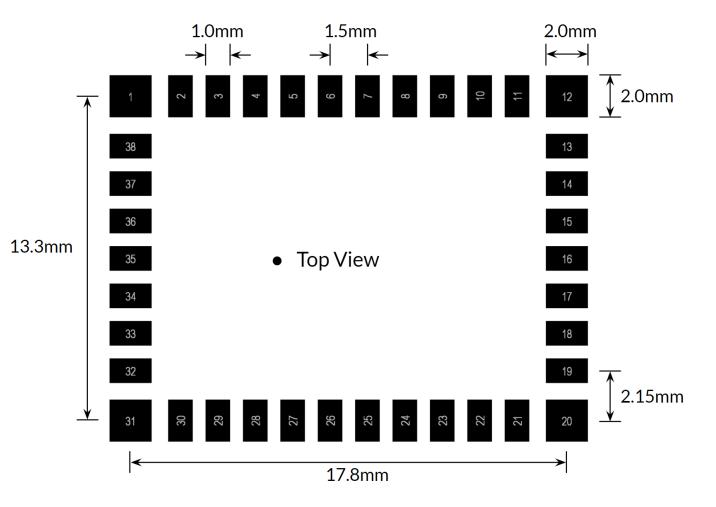

Note: The following transmit power levels are for IEEE compliance for 802.11ah. This does not take into account any backoffs needed to adhere to regional spectrum compliance (eg, FCC, IC, TELEC).

Tx output power (1, 2 MHz BW)	Min (dBm)	Typical (dBm)	Max (dBm)
MCS 0	20	21	22
MCS 7	16	17	18.5

Tx output power (4 MHz BW)	Min (dBm)	Typical (dBm)	Max (dBm)
MCS 0	20.5	21	22
MCS 7	16	17	18

Tx output power (8 MHz BW)	Min (dBm)	Typical (dBm)	Max (dBm)
MCS 0	20.5	21	21.5
MCS 7	15.5	17	17.5





Parameters	Description	Min	Max	Unit
V_{IL_nRST}	Reset threshold	450		mV
to	Time between VBAT brought up (3.3V) and RESET_N being activated	50		μs
t ₁	Duration of RESET_N signal level < VIL_nRST to 1000 reset the chip			µ s
t _B	Boot Time		6	ms

Parameters	Description	VDDIO	Min	Max	Unit
V _{IL_GPIO}	Low input threshold for all GPIO and SDIO pins	1.8	-0.3	0.63	V
		2.5	-0.3	0.7	V
		3.3	-0.3	0.8	V
V _{IH_GPIO}	High input threshold for all GPIO and SDIO pins	1.8	1.17	3.6	V
		2.5	1.7	3.6	V
		3.3	2.0	3.6	V
V _{OL_GPIO}	Low output voltage for all GPIO and SDIO pins assuming a 8mA load	1.8	0.13	0.38	V
		2.5	0.10	0.27	V
		3.3	0.08	0.18	V
V _{OH_GPIO}	High output voltage for all GPIO and SDIO pins assuming a 8mA load	1.8	1.34	1.70	V
		2.5	2.20	2.41	V
		3.3	3.07	3.23	V
V _{ol_sdio}	Low output voltage for all SDIO pins assuming a 8mA load	1.8	0.17	0.52	V
		2.5	0.14	0.36	V
		3.3	0.11	0.24	V
V _{oh_sdio}	High output voltage for all SDIO pins assuming a 8mA load	1.8	1.19	1.67	V
		2.5	2.10	2.39	V
		3.3	2.99	3.21	V

5. Physical specifications

6. Recommended PCB footprint

7. Certification 7.1. FCC

Federal Communication Commission Interference Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- Consult the dealer or an experienced radio/TV technician for help

FCC caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

IMPORTANT NOTE:

FCC Radiation Exposure Statement:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with a minimum distance 20cm between the radiator and your body.

IMPORTANT NOTE:

This module is intended for OEM integrators. This module is only FCC authorized for the specific rule parts listed on the grant, and that the host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. The final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed.

Additional testing and certification may be necessary when multiple modules are used.

USER MANUAL OF THE END PRODUCT:

In the user manual of the end product, the end user has to be informed to keep at least 20cm of separation with the antenna while this end product is installed and operated. The end user has to be informed that the FCC radio-frequency exposure guidelines for an uncontrolled environment can be satisfied.

The end user has to also be informed that any changes or modifications not expressly approved by the manufacturer could void the user's authority to operate this equipment.

This device complies with Part 15 of FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) this device must accept any interference received, including interference that may cause undesired operation.

LABEL OF THE END PRODUCT:

The final end product must be labeled in a visible area with the following:

"Contains FCC ID: 2A74O-628C73".

This device complies with Part 15 of FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) this device must accept any interference received, including interference that may cause undesired operation.

7.2 IC

IC statement

This device contains licence-exempt transmitter(s)/receiver(s) that comply with Innovation, Science and Economic Development Canada's licence-exempt RSS(s). Operation is subject to the following two conditions:

(1) This device may not cause interference.

(2) This device must accept any interference, including interference that may cause undesired operation of the device.

Cet appareil contient des émetteurs / récepteurs exempts de licence qui sont conformes au (x)

RSS (s) exemptés de licence d'Innovation, Sciences et Développement économique Canada. L'opération est soumise aux deux conditions suivantes:

(1) Cet appareil ne doit pas provoquer d'interférences.

(2) Cet appareil doit accepter toute interférence, y compris les interférences susceptibles de provoquer un fonctionnement indésirable de l'appareil.

This radio transmitter 29791-628C73 has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Le présent émetteur radio 29791-628C73 a été approuvé par Innovation, Sciences et Développement économique Canada pour fonctionner avec les types d'antenne énumérés ci-dessous et ayant un gain admissible maximal d'antenne. Les types d'antennes non inclus dans cette liste qui ont un gain supérieur au gain maximal indiqué pour tout type listé sont strictement interdits pour une utilisation avec cet appareil.

IMPORTANT NOTE:

IC Radiation Exposure Statement:

This equipment complies with IC RSS-102 radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with a minimum distance of 20cm between the radiator & your body.

Cet équipement est conforme aux limites d'exposition aux rayonnements IC établies pour un environnement non contrôlé. Cet équipement doit être installé et utilisé avec un minimum de 20 cm de distance entre la source de rayonnement et votre corps.

IMPORTANT NOTE:

This module is intended for OEM integrators. The OEM integrator is responsible for the compliance to all the rules that apply to the product into which this certified RF module is integrated. Additional testing and certification may be necessary when multiple modules

are used. Any changes or modifications not expressly approved by the manufacturer

could void the user's authority to operate this equipment.

USERS MANUAL OF THE END PRODUCT:

In the users manual of the end product, the end user has to be informed to keep at least 20 cm separation with the antenna while this end product is installed and operated. The end user has to be informed that the IC radio-frequency exposure guidelines for an uncontrolled environment can be satisfied.

The end user has to also be informed that any changes or modifications not expressly approved by the manufacturer could void the user's authority to operate this equipment. Operation is subject to the following two conditions:

(1) this device may not cause harmful interference

(2) this device must accept any interference received, including interference that may cause undesired operation.

LABEL OF THE END PRODUCT:

The final end product must be labeled in a visible area with the following:

"Contains IC: 29791-628C73 ".

The Host Model Number (HMN) must be indicated at any location on the exterior of the end product or product packaging or product literature which shall be available with the end product or online.

8. Part numbers and ordering information

Part Number	Packing Type	Pins	Size (mm)	Description
MM6108-MF08651-US	Tray	38	140×185×21	IEEE 802.11ah Sub-1 GHz 1/2/4/8 MHz Wi-Fi HaLow Module

9. Handling and storage

The MM6108-MF08651-US class of modules are a moisture-sensitive device rated at Moisture Sensitive Level 3 (**MSL3**) per IPC/JEDEC J-STD-20.

After opening the moisture-sealed storage bag, modules that will be subjected to reflow solder or other high-temperature processes must be:

1. Mounted to a circuit board within 168 hours at factory conditions (<30°C and <60% RH)

OR

2. Continuously stored per IPC/JEDEC J-STD-033

Modules that have been exposed to moisture and environmental conditions exceeding packaging and storage conditions MUST be baked before mounting according to IPC/JEDEC J-STD-033. Failure to meet packaging and storage conditions will result in irreparable damage to modules during solder reflow.

10. Revision history

MM6108-MF08651-US ADS100; Dec 16th, 2023

• Initial release

Morse Micro makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Morse Micro assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Morse Micro have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Morse Micro. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Morse Micro hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Morse Micro does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Morse Micro, and Morse Micro reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

Morse Micro Pty. Ltd. Corporate Headquarters

Level 8, 10-14 Waterloo Street, Surry Hills, NSW 2010, Australia

Email: sales@morsemicro.com

Copyright © Morse Micro Pty. Ltd.